- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
The results of a search for stealth supersymmetry in final states with two photons and jets, targeting a phase space region with low missing transverse momentum ( ), are reported. The study is based on a sample of proton-proton collisions at collected by the CMS experiment, corresponding to an integrated luminosity of . As LHC results continue to constrain the parameter space of the minimal supersymmetric standard model, the low regime is increasingly valuable to explore. To estimate the backgrounds due to standard model processes in such events, we apply corrections derived from simulation to an estimate based on a control selection in data. The results are interpreted in the context of simplified stealth supersymmetry models with gluino and squark pair production. The observed data are consistent with the standard model predictions, and gluino (squark) masses of up to 2150 (1850) GeV are excluded at the 95% confidence level. © 2024 CERN, for the CMS Collaboration2024CERNmore » « less
-
Hayrapetyan, A; Tumasyan, A; Adam, W; Andrejkovic, J W; Bergauer, T; Chatterjee, S; Damanakis, K; Dragicevic, M; Valle, A_Escalante Del; Hussain, PS; et al (, The European Physical Journal C)Abstract The measurement of Z boson production is presented as a method to determine the integrated luminosity of CMS data sets. The analysis uses proton–proton collision data, recorded by the CMS experiment at the CERN LHC in 2017 at a center-of-mass energy of 13$$\,\text {Te\hspace{-.08em}V}$$ . Events with Z bosons decaying into a pair of muons are selected. The total number of Z bosons produced in a fiducial volume is determined, together with the identification efficiencies and correlations from the same data set, in small intervals of 20$$\,\text {pb}^{-1}$$ of integrated luminosity, thus facilitating the efficiency and rate measurement as a function of time and instantaneous luminosity. Using the ratio of the efficiency-corrected numbers of Z bosons, the precisely measured integrated luminosity of one data set is used to determine the luminosity of another. For the first time, a full quantitative uncertainty analysis of the use of Z bosons for the integrated luminosity measurement is performed. The uncertainty in the extrapolation between two data sets, recorded in 2017 at low and high instantaneous luminosity, is less than 0.5%. We show that the Z boson rate measurement constitutes a precise method, complementary to traditional methods, with the potential to improve the measurement of the integrated luminosity.more » « less
An official website of the United States government
